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Abstract Statistical models were developed to estimate

the bias of the shape parameter of a 2-parameter Weibull

distribution where the shape parameter was estimated using

a linear regression. These models were formulated for 27

sample sizes from 5 to 100 and for 35 probability estima-

tors, P ¼ ði� aÞ=ðnþ bÞ, by varying ‘‘a’’ and ‘‘b’’. In each

simulation, 20,000 trials were used. From these models, a

class of unbiased estimators were developed for each

sample size. The standard deviation and coefficient of

variation of these estimators were compared to the bias of

the estimators. The standard deviation increased while the

coefficient of variation decreased with increasing bias of

the shape parameter. Also, the Anderson–Darling statistics

was used to determine that the normal, log-normal,

3-parameter Weibull, and 3-parameter log-Weibull distri-

butions did not provide good fit to the estimator of the

shape parameter.

Introduction

Weibull statistics is widely used to model the variability in

the fracture properties of ceramics and to a lesser extent,

metals. The probability, P, that a part will fracture at a

given stress, r, or below can be predicted as [1].

P ¼ 1� exp � r� rT

r0

� �m� �
ð1Þ

where rT is the threshold value below which no failure is

expected, r0 is the scale parameter, and m is the Weibull

modulus, alternatively referred to as the shape parameter.

Equation 1 is for the 3-parameter Weibull distribution.

When rT is taken as zero, as in ceramics, Eq. 1 reduces to a

2-parameter Weibull cumulative probability function. In

the present study, only the 2-parameter case is investigated.

The shape parameter, m, in Eq. 1 has been used as a

measure of reliability, and applied to brittle fracture of

ceramics and mechanical properties of metals, such as

tensile and fatigue results. Due to the destructive nature of

testing involved in these studies, m has to be estimated

from a sample, sometimes small in size, using one of the

three methods: (i) linear regression, (ii) maximum likeli-

hood, and (iii) moments. The Weibull modulus estimated

by any of these methods is a statistic, referred to as m̂,

which by definition, has a distribution of its own. More-

over, the method of estimating Weibull modulus was found

[1–3] to affect the average and standard deviation of the

distribution of m̂.

Although the estimation of the Weibull modulus has

been investigated for more than 30 years, there remain

some issues that need to be addressed, especially for the

linear regression method. This study is motivated by this

need and is focused on the linear regression method. The

outstanding issues are first introduced and solutions are

developed for each issue.

Background

If rT is taken as 0, as in brittle fracture, then Eq. 1 can be

rearranged to obtain
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ln � ln 1� Pð Þ½ � ¼ m lnðrÞ � m lnðr0Þ ð2Þ

Note that the right hand side of Eq. 2 suggests a linear

relationship with a slope of m and an intercept of –mln(r0).

To estimate m by using Eq. 2, a probability, P, has to be

assigned to each experimental data point. There are several

probability estimators available in the literature [3–12].

These probability estimators can all be written in the form

P ¼ i� a

nþ b
ð3Þ

where i is the rank of the data point in the sample in

ascending order, n represents the sample size, and a and b

are numbers, such that 0 £ a £ 0.5 and 0 £ b £ 1.0. The

common probability estimators found in the literature are

provided in Table 1.

It has been shown [1–3, 13] via Monte–Carlo simula-

tions that different probability estimators yield different

levels of bias, i.e., difference between true value of the

Weibull modulus, mtrue, and the average of the estimated

Weibull moduli. A common technique of determining bias

is to normalize the estimated Weibull moduli by mtrue. This

estimated normalized moduli, m̂=mtrue, will be referred to

as m̂�. Of particular interest is the average of m̂�, which

will be referred to as M. If M is 1, then the probability

estimator of m̂� is unbiased.

Recently there has been renewed interest in finding the

combination of a and b that yields an unbiased estimate of

the Weibull modulus. In one of the two recent studies, Wu

et al. [13] changed a and b simultaneously to find unbiased

probability estimators for sample sizes between 10 and 50

at increments of 5. Tiryakioğlu [14] held b = 0 and chan-

ged a systematically until 1 was included in the 95%

confidence limits of the average of normalized Weibull

moduli for sample sizes between 9 and 50. In other words,

the mean of the generalized Weibull moduli generated

from the simulation was 1. He also showed that a in Eq. 3

affects only the bias and not the standard deviation. The

results of these two studies are summarized in Table 2.

Note that a values for Wu et al. are generally in excess of

0.5. These results indicate that there are more than one set

of solutions for the unbiased probability estimator for a

given sample size.

There have been several investigations [15, 16] in which

the use of correction factors was proposed to eliminate the

bias of probability estimators. Gong [16] suggested that the

corrected Weibull modulus, mc, could be obtained by

mc ¼
m̂

M
ð14Þ

Such a correction would modify the standard deviation

of m̂, sm̂ such that

sc ¼
sm̂

M
ð15Þ

where sc is the standard deviation of the corrected

Weibull modulus. Note that the standard deviation of m̂�
in Eq. 15 represents the coefficient of variation of the

normalized Weibull modulus. Ritter et al. [17] showed by

using the law of propagation of errors that the coefficient

of variation of normalized m should be a function of n

such that:

Table 1 Probability estimators reported in the literature

a b Ref. Equation

0.5 0 [4] (4)

0 1 [5] (5)

0.3 0.4 [6] (6)

0.375 0.250 [7] (7)

0.44 0.12 [8] (8)

0.25 0.50 [9] (9)

0.4 0.2 [10] (10)

0.333 0.333 [11] (11)

0.50 0.25 [1] (12)

0.31 0.38 [12] (13)

Table 2 Unbiased probability estimators reported by Wu et al. [13]

and Tiryakioğlu [14] for various sample sizes

Wu et al. Tiryakioğlu

n a b a

9 0.130

10 0.37 0.24 0.210

11 0.260

12 0.300

13 0.332

14 0.355

15 0.54 0.85 0.368

16 0.380

17 0.390

18 0.400

19 0.410

20 0.49 0.32 0.418

22 0.430

25 0.47 0.13 0.443

27 0.448

30 0.53 0.41 0.455

32 0.460

35 0.57 0.64 0.465

40 0.56 0.52 0.472

45 0.51 0.14 0.481

50 0.56 0.42 0.486
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sm̂�
M
¼ 1ffiffiffi

n
p ð16Þ

which was later verified by Bergman [18] who ran Monte–

Carlo simulations using Eqs. 4, 5, 6, and 8. Khalili and

Kromp [1] however, plotted coefficient of variation versus

n–1/2 and noticed that the relationship proposed by Ritter

et al. is valid only for n ‡ 10. Wu et al. [13] investigated

the same probability estimators as Bergman and found that

coefficient of variation for the different estimators,

including those that are unbiased, are approximately equal

for all sample sizes, which is in agreement with previous

studies [1, 3, 17, 18]. For coefficient of variation to be the

same for all probability estimators that yield different

averages (bias), the standard deviation and mean of esti-

mated Weibull moduli have to be correlated. This point,

however, has not been addressed in the literature.

Ritter et al. [17] ran Monte–Carlo simulations and

concluded that the distribution of the estimated Weibull

modulus is approximately normal. These researchers ran

Monte–Carlo simulations only 100 times. It has since been

shown [1, 19–21] that the distribution of m is positively

skewed. Gong and Wang [19] stated that m follows a

lognormal distribution for linear regression (using Eq. 4)

and maximum likelihood methods. These authors used the

v2 goodness-of-fit test for their evaluation. Barbero et al.

[20] claimed that the distribution of m estimated by

the maximum likelihood method is better expressed by a

3-parameter Weibull distribution. In a later publication

[21], the same authors found that 3-parameter log-Weibull

distribution provides a better fit to m estimated by

the maximum likelihood method than lognormal and

3-parameter Weibull distribution. Recently, Tiryakioğlu

[22] analyzed the distribution of m estimated by the max-

imum likelihood and moments methods using the

Anderson–Darling goodness-of-fit test [23–25], which is

much more sensitive to tails than the v2 test. Tiryakioğlu

found that the distribution of m̂ for 5 £ n £ 50 is neither

normal, lognormal, 3-parameter nor 3-parameter log-

Weibull for the maximum likelihood method. For the

moments method, the distribution of m̂ was found to be

lognormal for n ‡ 40. For any sample size, the 3-parameter

Weibull distribution did not provide a good fit.

The literature survey presented above indicates that

these issues need to be investigated:

• How do a and b in Eq. 3 affect the average and standard

deviation of m̂�?
• Is the distribution of m̂�for the linear regression method

normal, lognormal, 3-parameter Weibull, or 3-param-

eter log-Weibull?

These issues have been investigated in this study and

results are reported.

Research methodology

The study was conducted in two phases. In both phases,

Monte–Carlo simulations were used to generate n data

points from a Weibull distribution with r0 = 1. Since the

value of mtrue does not affect the distribution of normalized

m̂ (see Khalili and Kromp [1]), its value was kept constant

at 10. In Phase 1, 27 sample sizes were used in this study,

ranging from 5 to 100. For one observation, n random

numbers between 0 and 1 were generated to obtain a set of

r values. Best fits using linear regression were obtained by

using the 10 probability estimators presented in Table 1.

For each sample size and probability estimator, the

experiment was repeated 20,000 times.

In Phase 2, 24 additional probability estimators were

tested, in two stages. In the first stage, 16 new probability

estimators were determined by randomizing a between 0

and 0.5, and b between 0 and 1. The M values obtained by

using these 16 random probability estimators were com-

bined with the results of Phase 2 and earlier published

results [14] to develop regression equations for each sam-

ple size with M as the response variable and a and b as

regressors. These equations were used to determine eight

more probability estimators at b = 1, 0.8, 0.7, and 0.6 such

that they yielded an estimated M of 0.99 and 1.01.

Therefore a total of 35 probability estimators were used to

investigate the effect of a and b on M and the standard

deviation of normalized Weibull modulus (s) for each

sample size. As in Phase 1, for each probability estimator

and sample size, the experiment was repeated 20,000 times

using the same levels of r0 and mtrue. The final regression

equations were developed using data from all 35 proba-

bility estimators.

Results and discussion

The effect of probability estimators on M and s

The effect of sample size on M for different probability

estimators is presented in Fig. 1. Note that the probability

estimators have a strong effect on M. These results are in

close agreement with the ones reported in earlier studies [1,

2]. The use of Eq. 4 was recommended by Khalili and

Kromp because of its low level of bias. It is evident in

Fig. 1b that Eq. 12 performs equally well. To the authors’

knowledge, this is the first time that the performance of

Eq. 12 is reported for the Weibull distribution.

Using the averages presented in Fig. 1, the results

reported earlier by one of the investigators [14], and the

additional 24 estimators generated by randomly choosing

values for a and b, regression analyses were conducted to

quantify the effect of ‘‘a’’ and ‘‘b’’ in Eq. 3 on M. Linear,
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log-linear, and quadratic models were tested. The best

adjusted R2 values (ranging from 0.991 to 0.998) were

obtained in the quadratic model:

M̂ ¼ b0 þ b1aþ b2bþ b3abþ b4a2 þ b5b2 ð17Þ

where all b’s are regression coefficients and their values

are listed in Table 3 for all sample sizes. These regression

equations can be used to estimate the bias of any proba-

bility estimator with a and b between 0 and 1.

Equation 17 along with the coefficients listed in

Table 3 was used to determine the combinations of a and

b that yield unbiased probability estimators, i.e., M̂ ¼ 1.

The unbiased probability estimator contours for nine

sample sizes are presented in Fig 2. Note that the results

of Wu et al. and Tiryakioğlu are very close to the con-

tours for respective sample sizes. These findings show

that there is more than one unbiased probability estimator

for each sample size. Figure 2 also explains why Tirya-

kioğlu could not find levels of a that yield unbiased

results for n £ 8. The contours for n £ 8 have no

x-intercept, i.e., b [ 0 for all values of a for the unbiased

estimates.

Iso-M contours for a sample size of 20 are presented in

Fig. 3. The M values for the probability estimators in

Table 1 are also indicated in the figure. Note that M values

for the 10 probability estimators range between approxi-

mately 0.89 and 1.02.

For each sample size, the standard deviation of nor-

malized Weibull modulus was plotted versus M. The effect

of M on the standard deviation (s) for n = 20 is presented in

Fig. 4. Note that the standard deviation increases linearly

with M. The same observation was made for all sample

sizes. Therefore, standard deviation and average are cor-

related. To the authors’ knowledge, this correlation had not

been reported in previous studies.

Whether M and the coefficient of variation (sc) are

correlated was also investigated. The coefficient of varia-

tion was found to decrease with increasing M, as presented

for n = 20 in Fig. 4. Hence the bias of a probability esti-

mator also affects its coefficient of variation, although

slightly. Again, the correlation between M and the coeffi-

cient of variation had not been reported previously. This

finding indicates that correcting the Weibull modulus using

Eq. 14 almost stabilizes the standard deviation. This can be

seen by considering Eq. 14. The standard deviation of mc is

actually the coefficient of variation of m̂, which changes

slightly for different values of M as shown in Fig. 4. If

correction factors are to be employed, it is recommended

that they be applied to only Eq. 4 (and not the other

probability estimators) and for n £ 35 because Eq. 4 gives

the highest M among the probability estimators in Table 1,

as depicted in Fig. 1. For n [ 35, all probability estimators

underestimate (have negative bias), and therefore when

corrected, they will have larger standard deviations than

the unbiased probability estimators developed in this study.

Instead, it is recommended that unbiased probability esti-

mators found from Table 3 be used.

Since the coefficient of variation was found to be

affected by M, it cannot be expected to be equal to n–1/2 for

all probability estimators. The validity of the derivation of

Ritter et al. was tested by plotting scn
1/2 versus n for the 10

probability estimators in Table 1. The results are presented

in Fig. 5. Note that for all probability estimators and

sample sizes, scn
1/2 [ 1, although seems to be minimum

close to unity near n = 20. Hence the derivation of Ritter

et al. underestimates the coefficient of variation and should

be used only as an approximation.

The Distribution of m

To determine whether m, estimated by the linear regression

method, follows the normal, lognormal, 3-parameter Wei-

bull or 3-parameter log-Weibull distributions, hypothesis

tests were conducted using the Anderson–Darling (A2)

goodness-of-fit test statistic:

0.8

0.9

1.0

1.1

1.2

1.3

1.4

n

M
Eq. 4
Eq. 5
Eq. 6
Eq. 7
Eq. 8

(a)

0.8

0.9

1.0

1.1

1.2

1.3

1.4

n

M

Eq. 9
Eq. 10
Eq. 11
Eq. 12
Eq. 13

(b)

40 60 80 1000 20

40 60 80 1000 20

Fig. 1 The effect of sample size on M for different probability

estimators found in the literature
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Table 3 The results of the regression analyses

n b0 b1 b2 b3 b4 b5

5 1.08343 0.00650 –0.25339 0.15503 0.41598 0.06495

6 1.03645 0.05108 –0.22932 0.12063 0.30370 0.07331

7 1.01034 0.04810 –0.19986 0.11281 0.29499 0.05544

8 1.00646 –0.00189 –0.20157 0.13686 0.31602 0.06119

9 0.98350 0.07336 –0.17398 0.09494 0.19710 0.05914

10 0.99199 –0.02086 –0.17514 0.11756 0.32175 0.05006

11 0.96193 0.05300 –0.11633 0.05592 0.24680 0.02824

12 0.96290 0.04673 –0.11895 0.06600 0.22973 0.03096

13 0.95950 0.03069 –0.10180 0.05460 0.25633 0.01921

14 0.95267 0.07694 –0.10285 0.05692 0.16867 0.02590

15 0.95162 0.06955 –0.09267 0.04483 0.17340 0.02499

17 0.95003 0.06704 –0.08242 0.04516 0.15562 0.01793

20 0.94880 0.05970 –0.07162 0.03333 0.16134 0.01616

25 0.95165 0.04935 –0.06038 0.03430 0.13997 0.01069

30 0.95401 0.04162 –0.05178 0.03281 0.12813 0.00856

35 0.94962 0.05613 –0.04094 0.02240 0.10497 0.00635

40 0.95294 0.04690 –0.03760 0.01674 0.10674 0.00678

45 0.96260 0.01933 –0.03949 0.03281 0.11658 0.00211

50 0.95834 0.03969 –0.03395 0.01709 0.09412 0.00579

55 0.96050 0.04255 –0.03604 0.02479 0.07348 0.00711

60 0.96065 0.04122 –0.03250 0.02040 0.07364 0.00675

65 0.96017 0.04084 –0.02549 0.01243 0.07372 0.00480

70 0.96254 0.03306 –0.02218 0.01511 0.07559 0.00047

75 0.96214 0.04257 –0.02274 0.01559 0.05723 0.00289

80 0.96233 0.04492 –0.01939 0.00827 0.05457 0.00261

90 0.96490 0.04000 –0.01992 0.00973 0.05348 0.00373

100 0.96729 0.03368 –0.01813 0.00921 0.05659 0.00149

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

a

b

Wu et al.

Tiryakioglu

5

6

8 10

15

20 30

50

100

Fig. 2 The unbiased probability estimator contours for different sam-

ple sizes. The results of Wu et al. and Tiryakioğlu are also indicated
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Fig. 3 Iso-M contours for n = 20. The bias of probability estimators

listed in Table 1 is also indicated
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A2 ¼ �n� 1

n

Xn

i¼1

ð2i� 1Þðln Pi þ lnð1� Pnþ1�iÞÞ½ � ð18Þ

The sensitivity of the Anderson–Darling test to the tails

of the distribution is the reason why it was selected. Lesser

the value of A2, higher the confidence that data follow the

distribution being tested.

The results of the Monte–Carlo simulations for Eq. 4 for

13 sample sizes between 5 and 100 were tested. Hence for

each sample size, 20,000 data were evaluated for goodness-

of-fit. The A2 values calculated for each sample size and

distribution are presented in Table 4. For each sample size

and distribution, P-value is less than 0.005. Therefore m

does not follow the normal, lognormal, 3-parameter Wei-

bull, and the 3-parameter log-Weibull distributions. It

should be noted that the lognormal distribution provided

better fit than the other three, as indicated by significantly

smaller A2. It is not surprising that Gong and Wang found

the distribution of m to be lognormal using the v2 good-

ness-of-fit test, which is much less sensitive to the tails of

the distribution than A2. Moreover m estimated by the

moments method follows the lognormal distribution for

0.20

0.21

0.22

0.23

0.24

0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04

M

s

sc

Fig. 4 The effect of M on the standard deviation of normalized

Weibull modulus (s) and coefficient of variation (sc) for n = 20

1.0

1.1

1.2

1.3

1.4

0 20 40 60 80 100

n

0 20 40 60 80 100

n

s c
n

2/1

Eq. 4
Eq. 5
Eq. 6
Eq. 7
Eq. 8

(a)

1.0

1.1

1.2

1.3

1.4

s c
n

2/1

Eq. 9
Eq. 10
Eq. 11
Eq. 12
Eq. 13

(b)

Fig. 5 The effect of sample size on scn
1/2 for the probability

estimators in Table 1

Table 4 A2 values for normal, lognormal, 3-parameter Weibull and 3-parameter log-Weibull to m̂=mtrue data. In all cases, the P-values for the

hypotheses were below 0.005

n Normal Lognormal 3-p Weibull 3-p Log-Weibull

5 717.11 38.03 389.67 116.64

10 220.99 4.29 194.35 62.27

15 129.41 3.83 96.93 29.04

20 83.18 2.88 102.27 35.20

25 56.03 6.01 64.96 19.92

30 45.24 6.80 72.17 26.05

40 27.36 7.00 43.17 15.84

50 25.29 3.28 88.44 43.58

60 16.33 8.74 39.10 14.00

70 15.22 7.82 59.37 27.35

80 12.34 5.46 35.81 13.58

90 10.18 5.48 53.47 26.42

100 7.80 5.86 82.03 47.62
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n ‡ 40 by using the A2 goodness-of-fit test [22]. Never-

theless, m estimated by the linear regression method does

not follow the lognormal distribution.

The standard deviation of the probability distribution for

m̂=mtrue does, however, vary for different sample sizes.

Table 5 shows the average standard deviation for all

unbiased probability estimators of m̂=mtrue for different

sample sizes. These unbiased probability estimators are

those illustrated in Fig. 2. The standard deviation decreases

as the sample size increases resulting in much narrower

probability distributions for m̂=mtrue with large sample

sizes.

Conclusions

• Regression equations were developed to estimate the

bias of all probability estimators. These equations can

be used to find unbiased probability estimators for each

sample size. There is more than one unbiased proba-

bility estimator for each sample size.

• The standard deviation of m̂� increases linearly with the

bias of the probability estimator.

• The coefficient of variation decreases slightly with

increasing bias of the probability estimator.

• For n [ 35, all probability estimators in the literature

underestimate (have negative bias), and therefore when

corrected, they will have larger standard deviations

than the unbiased probability estimators developed in

this study.

• The proposition of Ritter et al. that the coefficient of

variation is equal to n–1/2, underestimates the coeffi-

cient of variation and should be used only as an

approximation.

• Weibull modulus estimated by the linear regression

method does not follow the normal, lognormal, 3-

parameter Weibull and the 3-parameter log-Weibull

distributions.
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